If it's not what You are looking for type in the equation solver your own equation and let us solve it.
n^2+6n-200=0
a = 1; b = 6; c = -200;
Δ = b2-4ac
Δ = 62-4·1·(-200)
Δ = 836
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{836}=\sqrt{4*209}=\sqrt{4}*\sqrt{209}=2\sqrt{209}$$n_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(6)-2\sqrt{209}}{2*1}=\frac{-6-2\sqrt{209}}{2} $$n_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(6)+2\sqrt{209}}{2*1}=\frac{-6+2\sqrt{209}}{2} $
| -5/8*p=-1/15 | | 62=22+5u | | -50=5p | | 20-3a=3a-22 | | 9b-56=10b-64 | | 4(w-83)=4 | | u+26=3u-66 | | n+3/10=4/5 | | 10x+4=8x-23 | | -18=-6m | | 4(x-2)=(1/2)x+5 | | d/9+68=75 | | 2y-1.7= | | a²-2a-98=0 | | 11(x−4)−12=25x−224 | | 9b+6.3=89.1 | | q/2-3=-2 | | 37(48x)=-39(-40x) | | 23x-5=-115 | | -2(x–8)=20. | | 1x1=500 | | 11s+24=145 | | 4.y-25=-43 | | 3x-24=5x+48 | | 145=11s+24 | | 4^(3x-2)=15 | | 48=8(x+6)24x=8(x+6) | | 2×x-3=13 | | x³=108 | | x^2-2.33x+1.36=0 | | 5/12=35n | | 3-d/3=1 |